\(\int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx\) [255]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 191 \[ \int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) x+\frac {\left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \cot (c+d x)}{d}+\frac {a \left (2 a^2 A-5 A b^2-6 a b B\right ) \cot ^2(c+d x)}{4 d}-\frac {a^2 (3 A b+2 a B) \cot ^3(c+d x)}{6 d}+\frac {\left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \log (\sin (c+d x))}{d}-\frac {a A \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d} \]

[Out]

(3*A*a^2*b-A*b^3+B*a^3-3*B*a*b^2)*x+(3*A*a^2*b-A*b^3+B*a^3-3*B*a*b^2)*cot(d*x+c)/d+1/4*a*(2*A*a^2-5*A*b^2-6*B*
a*b)*cot(d*x+c)^2/d-1/6*a^2*(3*A*b+2*B*a)*cot(d*x+c)^3/d+(A*a^3-3*A*a*b^2-3*B*a^2*b+B*b^3)*ln(sin(d*x+c))/d-1/
4*a*A*cot(d*x+c)^4*(a+b*tan(d*x+c))^2/d

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3686, 3716, 3709, 3610, 3612, 3556} \[ \int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {a \left (2 a^2 A-6 a b B-5 A b^2\right ) \cot ^2(c+d x)}{4 d}-\frac {a^2 (2 a B+3 A b) \cot ^3(c+d x)}{6 d}+\frac {\left (a^3 B+3 a^2 A b-3 a b^2 B-A b^3\right ) \cot (c+d x)}{d}+\frac {\left (a^3 A-3 a^2 b B-3 a A b^2+b^3 B\right ) \log (\sin (c+d x))}{d}+x \left (a^3 B+3 a^2 A b-3 a b^2 B-A b^3\right )-\frac {a A \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d} \]

[In]

Int[Cot[c + d*x]^5*(a + b*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

(3*a^2*A*b - A*b^3 + a^3*B - 3*a*b^2*B)*x + ((3*a^2*A*b - A*b^3 + a^3*B - 3*a*b^2*B)*Cot[c + d*x])/d + (a*(2*a
^2*A - 5*A*b^2 - 6*a*b*B)*Cot[c + d*x]^2)/(4*d) - (a^2*(3*A*b + 2*a*B)*Cot[c + d*x]^3)/(6*d) + ((a^3*A - 3*a*A
*b^2 - 3*a^2*b*B + b^3*B)*Log[Sin[c + d*x]])/d - (a*A*Cot[c + d*x]^4*(a + b*Tan[c + d*x])^2)/(4*d)

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3612

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c +
b*d)*(x/(a^2 + b^2)), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3686

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e
+ f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m -
 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a*A*d*(b*d*(m - 1) - a*c*(n + 1)) + (b*B*c - (A*b + a*B)*d)*(b*c*(m - 1)
 + a*d*(n + 1)) - d*((a*A - b*B)*(b*c - a*d) + (A*b + a*B)*(a*c + b*d))*(n + 1)*Tan[e + f*x] - b*(d*(A*b*c + a
*B*c - a*A*d)*(m + n) - b*B*(c^2*(m - 1) - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (Inte
gerQ[m] || IntegersQ[2*m, 2*n])

Rule 3709

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2)
)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e +
 f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2
 + b^2, 0]

Rule 3716

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(c^2*C - B*c*d + A*d^2)
*((c + d*Tan[e + f*x])^(n + 1)/(d^2*f*(n + 1)*(c^2 + d^2))), x] + Dist[1/(d*(c^2 + d^2)), Int[(c + d*Tan[e + f
*x])^(n + 1)*Simp[a*d*(A*c - c*C + B*d) + b*(c^2*C - B*c*d + A*d^2) + d*(A*b*c + a*B*c - b*c*C - a*A*d + b*B*d
 + a*C*d)*Tan[e + f*x] + b*C*(c^2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] &
& NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {a A \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {1}{4} \int \cot ^4(c+d x) (a+b \tan (c+d x)) \left (2 a (3 A b+2 a B)-4 \left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)-2 b (a A-2 b B) \tan ^2(c+d x)\right ) \, dx \\ & = -\frac {a^2 (3 A b+2 a B) \cot ^3(c+d x)}{6 d}-\frac {a A \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {1}{4} \int \cot ^3(c+d x) \left (-2 a \left (2 a^2 A-5 A b^2-6 a b B\right )-4 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)-2 b^2 (a A-2 b B) \tan ^2(c+d x)\right ) \, dx \\ & = \frac {a \left (2 a^2 A-5 A b^2-6 a b B\right ) \cot ^2(c+d x)}{4 d}-\frac {a^2 (3 A b+2 a B) \cot ^3(c+d x)}{6 d}-\frac {a A \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {1}{4} \int \cot ^2(c+d x) \left (-4 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right )+4 \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \tan (c+d x)\right ) \, dx \\ & = \frac {\left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \cot (c+d x)}{d}+\frac {a \left (2 a^2 A-5 A b^2-6 a b B\right ) \cot ^2(c+d x)}{4 d}-\frac {a^2 (3 A b+2 a B) \cot ^3(c+d x)}{6 d}-\frac {a A \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\frac {1}{4} \int \cot (c+d x) \left (4 \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )+4 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \tan (c+d x)\right ) \, dx \\ & = \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) x+\frac {\left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \cot (c+d x)}{d}+\frac {a \left (2 a^2 A-5 A b^2-6 a b B\right ) \cot ^2(c+d x)}{4 d}-\frac {a^2 (3 A b+2 a B) \cot ^3(c+d x)}{6 d}-\frac {a A \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d}+\left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \int \cot (c+d x) \, dx \\ & = \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) x+\frac {\left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \cot (c+d x)}{d}+\frac {a \left (2 a^2 A-5 A b^2-6 a b B\right ) \cot ^2(c+d x)}{4 d}-\frac {a^2 (3 A b+2 a B) \cot ^3(c+d x)}{6 d}+\frac {\left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \log (\sin (c+d x))}{d}-\frac {a A \cot ^4(c+d x) (a+b \tan (c+d x))^2}{4 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.78 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.04 \[ \int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {12 \left (3 a^2 A b-A b^3+a^3 B-3 a b^2 B\right ) \cot (c+d x)+6 a \left (a^2 A-3 A b^2-3 a b B\right ) \cot ^2(c+d x)-4 a^2 (3 A b+a B) \cot ^3(c+d x)-3 a^3 A \cot ^4(c+d x)-6 (a+i b)^3 (A+i B) \log (i-\tan (c+d x))+12 \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \log (\tan (c+d x))-6 (a-i b)^3 (A-i B) \log (i+\tan (c+d x))}{12 d} \]

[In]

Integrate[Cot[c + d*x]^5*(a + b*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

(12*(3*a^2*A*b - A*b^3 + a^3*B - 3*a*b^2*B)*Cot[c + d*x] + 6*a*(a^2*A - 3*A*b^2 - 3*a*b*B)*Cot[c + d*x]^2 - 4*
a^2*(3*A*b + a*B)*Cot[c + d*x]^3 - 3*a^3*A*Cot[c + d*x]^4 - 6*(a + I*b)^3*(A + I*B)*Log[I - Tan[c + d*x]] + 12
*(a^3*A - 3*a*A*b^2 - 3*a^2*b*B + b^3*B)*Log[Tan[c + d*x]] - 6*(a - I*b)^3*(A - I*B)*Log[I + Tan[c + d*x]])/(1
2*d)

Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.09

method result size
parallelrisch \(\frac {6 \left (-A \,a^{3}+3 A a \,b^{2}+3 B \,a^{2} b -B \,b^{3}\right ) \ln \left (\sec ^{2}\left (d x +c \right )\right )+12 \left (A \,a^{3}-3 A a \,b^{2}-3 B \,a^{2} b +B \,b^{3}\right ) \ln \left (\tan \left (d x +c \right )\right )-3 A \left (\cot ^{4}\left (d x +c \right )\right ) a^{3}+4 \left (-3 A \,a^{2} b -B \,a^{3}\right ) \left (\cot ^{3}\left (d x +c \right )\right )+6 a \left (\cot ^{2}\left (d x +c \right )\right ) \left (A \,a^{2}-3 A \,b^{2}-3 B a b \right )+12 \cot \left (d x +c \right ) \left (3 A \,a^{2} b -A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right )+36 \left (A \,a^{2} b -\frac {1}{3} A \,b^{3}+\frac {1}{3} B \,a^{3}-B a \,b^{2}\right ) d x}{12 d}\) \(209\)
derivativedivides \(\frac {\frac {\left (-A \,a^{3}+3 A a \,b^{2}+3 B \,a^{2} b -B \,b^{3}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}+\left (3 A \,a^{2} b -A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right ) \arctan \left (\tan \left (d x +c \right )\right )-\frac {-3 A \,a^{2} b +A \,b^{3}-B \,a^{3}+3 B a \,b^{2}}{\tan \left (d x +c \right )}+\left (A \,a^{3}-3 A a \,b^{2}-3 B \,a^{2} b +B \,b^{3}\right ) \ln \left (\tan \left (d x +c \right )\right )-\frac {A \,a^{3}}{4 \tan \left (d x +c \right )^{4}}-\frac {a^{2} \left (3 A b +B a \right )}{3 \tan \left (d x +c \right )^{3}}+\frac {a \left (A \,a^{2}-3 A \,b^{2}-3 B a b \right )}{2 \tan \left (d x +c \right )^{2}}}{d}\) \(212\)
default \(\frac {\frac {\left (-A \,a^{3}+3 A a \,b^{2}+3 B \,a^{2} b -B \,b^{3}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2}+\left (3 A \,a^{2} b -A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right ) \arctan \left (\tan \left (d x +c \right )\right )-\frac {-3 A \,a^{2} b +A \,b^{3}-B \,a^{3}+3 B a \,b^{2}}{\tan \left (d x +c \right )}+\left (A \,a^{3}-3 A a \,b^{2}-3 B \,a^{2} b +B \,b^{3}\right ) \ln \left (\tan \left (d x +c \right )\right )-\frac {A \,a^{3}}{4 \tan \left (d x +c \right )^{4}}-\frac {a^{2} \left (3 A b +B a \right )}{3 \tan \left (d x +c \right )^{3}}+\frac {a \left (A \,a^{2}-3 A \,b^{2}-3 B a b \right )}{2 \tan \left (d x +c \right )^{2}}}{d}\) \(212\)
norman \(\frac {\frac {\left (3 A \,a^{2} b -A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right ) \left (\tan ^{3}\left (d x +c \right )\right )}{d}+\left (3 A \,a^{2} b -A \,b^{3}+B \,a^{3}-3 B a \,b^{2}\right ) x \left (\tan ^{4}\left (d x +c \right )\right )-\frac {A \,a^{3}}{4 d}+\frac {a \left (A \,a^{2}-3 A \,b^{2}-3 B a b \right ) \left (\tan ^{2}\left (d x +c \right )\right )}{2 d}-\frac {a^{2} \left (3 A b +B a \right ) \tan \left (d x +c \right )}{3 d}}{\tan \left (d x +c \right )^{4}}+\frac {\left (A \,a^{3}-3 A a \,b^{2}-3 B \,a^{2} b +B \,b^{3}\right ) \ln \left (\tan \left (d x +c \right )\right )}{d}-\frac {\left (A \,a^{3}-3 A a \,b^{2}-3 B \,a^{2} b +B \,b^{3}\right ) \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2 d}\) \(225\)
risch \(\frac {6 i A a \,b^{2} c}{d}-\frac {2 i B \,b^{3} c}{d}+3 i B \,a^{2} b x -\frac {2 i \left (12 A \,a^{2} b -9 B a \,b^{2}+4 B \,a^{3}-6 i A \,a^{3} {\mathrm e}^{2 i \left (d x +c \right )}-6 i A \,a^{3} {\mathrm e}^{6 i \left (d x +c \right )}+6 i A \,a^{3} {\mathrm e}^{4 i \left (d x +c \right )}-3 A \,b^{3}+9 B a \,b^{2} {\mathrm e}^{6 i \left (d x +c \right )}-18 A \,a^{2} b \,{\mathrm e}^{6 i \left (d x +c \right )}+36 A \,a^{2} b \,{\mathrm e}^{4 i \left (d x +c \right )}-30 A \,a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}-27 B a \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+27 B a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}-10 B \,a^{3} {\mathrm e}^{2 i \left (d x +c \right )}+9 A \,b^{3} {\mathrm e}^{2 i \left (d x +c \right )}+3 A \,b^{3} {\mathrm e}^{6 i \left (d x +c \right )}-6 B \,a^{3} {\mathrm e}^{6 i \left (d x +c \right )}+12 B \,a^{3} {\mathrm e}^{4 i \left (d x +c \right )}-9 A \,b^{3} {\mathrm e}^{4 i \left (d x +c \right )}-18 i B \,a^{2} b \,{\mathrm e}^{4 i \left (d x +c \right )}+9 i A a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+9 i B \,a^{2} b \,{\mathrm e}^{6 i \left (d x +c \right )}-18 i A a \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+9 i A a \,b^{2} {\mathrm e}^{6 i \left (d x +c \right )}+9 i B \,a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}+3 A \,a^{2} b x -A \,b^{3} x +B \,a^{3} x -3 B a \,b^{2} x +\frac {6 i B \,a^{2} b c}{d}-i A \,a^{3} x +3 i A a \,b^{2} x -i B \,b^{3} x -\frac {2 i a^{3} A c}{d}+\frac {A \,a^{3} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d}-\frac {3 a \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) A \,b^{2}}{d}-\frac {3 a^{2} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) B b}{d}+\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) B \,b^{3}}{d}\) \(577\)

[In]

int(cot(d*x+c)^5*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/12*(6*(-A*a^3+3*A*a*b^2+3*B*a^2*b-B*b^3)*ln(sec(d*x+c)^2)+12*(A*a^3-3*A*a*b^2-3*B*a^2*b+B*b^3)*ln(tan(d*x+c)
)-3*A*cot(d*x+c)^4*a^3+4*(-3*A*a^2*b-B*a^3)*cot(d*x+c)^3+6*a*cot(d*x+c)^2*(A*a^2-3*A*b^2-3*B*a*b)+12*cot(d*x+c
)*(3*A*a^2*b-A*b^3+B*a^3-3*B*a*b^2)+36*(A*a^2*b-1/3*A*b^3+1/3*B*a^3-B*a*b^2)*d*x)/d

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.18 \[ \int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {6 \, {\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2} + B b^{3}\right )} \log \left (\frac {\tan \left (d x + c\right )^{2}}{\tan \left (d x + c\right )^{2} + 1}\right ) \tan \left (d x + c\right )^{4} + 3 \, {\left (3 \, A a^{3} - 6 \, B a^{2} b - 6 \, A a b^{2} + 4 \, {\left (B a^{3} + 3 \, A a^{2} b - 3 \, B a b^{2} - A b^{3}\right )} d x\right )} \tan \left (d x + c\right )^{4} - 3 \, A a^{3} + 12 \, {\left (B a^{3} + 3 \, A a^{2} b - 3 \, B a b^{2} - A b^{3}\right )} \tan \left (d x + c\right )^{3} + 6 \, {\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2}\right )} \tan \left (d x + c\right )^{2} - 4 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} \tan \left (d x + c\right )}{12 \, d \tan \left (d x + c\right )^{4}} \]

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/12*(6*(A*a^3 - 3*B*a^2*b - 3*A*a*b^2 + B*b^3)*log(tan(d*x + c)^2/(tan(d*x + c)^2 + 1))*tan(d*x + c)^4 + 3*(3
*A*a^3 - 6*B*a^2*b - 6*A*a*b^2 + 4*(B*a^3 + 3*A*a^2*b - 3*B*a*b^2 - A*b^3)*d*x)*tan(d*x + c)^4 - 3*A*a^3 + 12*
(B*a^3 + 3*A*a^2*b - 3*B*a*b^2 - A*b^3)*tan(d*x + c)^3 + 6*(A*a^3 - 3*B*a^2*b - 3*A*a*b^2)*tan(d*x + c)^2 - 4*
(B*a^3 + 3*A*a^2*b)*tan(d*x + c))/(d*tan(d*x + c)^4)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 400 vs. \(2 (187) = 374\).

Time = 2.31 (sec) , antiderivative size = 400, normalized size of antiderivative = 2.09 \[ \int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\begin {cases} \tilde {\infty } A a^{3} x & \text {for}\: c = 0 \wedge d = 0 \\x \left (A + B \tan {\left (c \right )}\right ) \left (a + b \tan {\left (c \right )}\right )^{3} \cot ^{5}{\left (c \right )} & \text {for}\: d = 0 \\\tilde {\infty } A a^{3} x & \text {for}\: c = - d x \\- \frac {A a^{3} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {A a^{3} \log {\left (\tan {\left (c + d x \right )} \right )}}{d} + \frac {A a^{3}}{2 d \tan ^{2}{\left (c + d x \right )}} - \frac {A a^{3}}{4 d \tan ^{4}{\left (c + d x \right )}} + 3 A a^{2} b x + \frac {3 A a^{2} b}{d \tan {\left (c + d x \right )}} - \frac {A a^{2} b}{d \tan ^{3}{\left (c + d x \right )}} + \frac {3 A a b^{2} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} - \frac {3 A a b^{2} \log {\left (\tan {\left (c + d x \right )} \right )}}{d} - \frac {3 A a b^{2}}{2 d \tan ^{2}{\left (c + d x \right )}} - A b^{3} x - \frac {A b^{3}}{d \tan {\left (c + d x \right )}} + B a^{3} x + \frac {B a^{3}}{d \tan {\left (c + d x \right )}} - \frac {B a^{3}}{3 d \tan ^{3}{\left (c + d x \right )}} + \frac {3 B a^{2} b \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} - \frac {3 B a^{2} b \log {\left (\tan {\left (c + d x \right )} \right )}}{d} - \frac {3 B a^{2} b}{2 d \tan ^{2}{\left (c + d x \right )}} - 3 B a b^{2} x - \frac {3 B a b^{2}}{d \tan {\left (c + d x \right )}} - \frac {B b^{3} \log {\left (\tan ^{2}{\left (c + d x \right )} + 1 \right )}}{2 d} + \frac {B b^{3} \log {\left (\tan {\left (c + d x \right )} \right )}}{d} & \text {otherwise} \end {cases} \]

[In]

integrate(cot(d*x+c)**5*(a+b*tan(d*x+c))**3*(A+B*tan(d*x+c)),x)

[Out]

Piecewise((zoo*A*a**3*x, Eq(c, 0) & Eq(d, 0)), (x*(A + B*tan(c))*(a + b*tan(c))**3*cot(c)**5, Eq(d, 0)), (zoo*
A*a**3*x, Eq(c, -d*x)), (-A*a**3*log(tan(c + d*x)**2 + 1)/(2*d) + A*a**3*log(tan(c + d*x))/d + A*a**3/(2*d*tan
(c + d*x)**2) - A*a**3/(4*d*tan(c + d*x)**4) + 3*A*a**2*b*x + 3*A*a**2*b/(d*tan(c + d*x)) - A*a**2*b/(d*tan(c
+ d*x)**3) + 3*A*a*b**2*log(tan(c + d*x)**2 + 1)/(2*d) - 3*A*a*b**2*log(tan(c + d*x))/d - 3*A*a*b**2/(2*d*tan(
c + d*x)**2) - A*b**3*x - A*b**3/(d*tan(c + d*x)) + B*a**3*x + B*a**3/(d*tan(c + d*x)) - B*a**3/(3*d*tan(c + d
*x)**3) + 3*B*a**2*b*log(tan(c + d*x)**2 + 1)/(2*d) - 3*B*a**2*b*log(tan(c + d*x))/d - 3*B*a**2*b/(2*d*tan(c +
 d*x)**2) - 3*B*a*b**2*x - 3*B*a*b**2/(d*tan(c + d*x)) - B*b**3*log(tan(c + d*x)**2 + 1)/(2*d) + B*b**3*log(ta
n(c + d*x))/d, True))

Maxima [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.13 \[ \int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {12 \, {\left (B a^{3} + 3 \, A a^{2} b - 3 \, B a b^{2} - A b^{3}\right )} {\left (d x + c\right )} - 6 \, {\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2} + B b^{3}\right )} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 12 \, {\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2} + B b^{3}\right )} \log \left (\tan \left (d x + c\right )\right ) - \frac {3 \, A a^{3} - 12 \, {\left (B a^{3} + 3 \, A a^{2} b - 3 \, B a b^{2} - A b^{3}\right )} \tan \left (d x + c\right )^{3} - 6 \, {\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2}\right )} \tan \left (d x + c\right )^{2} + 4 \, {\left (B a^{3} + 3 \, A a^{2} b\right )} \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{4}}}{12 \, d} \]

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/12*(12*(B*a^3 + 3*A*a^2*b - 3*B*a*b^2 - A*b^3)*(d*x + c) - 6*(A*a^3 - 3*B*a^2*b - 3*A*a*b^2 + B*b^3)*log(tan
(d*x + c)^2 + 1) + 12*(A*a^3 - 3*B*a^2*b - 3*A*a*b^2 + B*b^3)*log(tan(d*x + c)) - (3*A*a^3 - 12*(B*a^3 + 3*A*a
^2*b - 3*B*a*b^2 - A*b^3)*tan(d*x + c)^3 - 6*(A*a^3 - 3*B*a^2*b - 3*A*a*b^2)*tan(d*x + c)^2 + 4*(B*a^3 + 3*A*a
^2*b)*tan(d*x + c))/tan(d*x + c)^4)/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 528 vs. \(2 (185) = 370\).

Time = 1.09 (sec) , antiderivative size = 528, normalized size of antiderivative = 2.76 \[ \int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=-\frac {3 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 8 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 36 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 72 \, B a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 72 \, A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 120 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 360 \, A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 288 \, B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 96 \, A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 192 \, {\left (B a^{3} + 3 \, A a^{2} b - 3 \, B a b^{2} - A b^{3}\right )} {\left (d x + c\right )} + 192 \, {\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2} + B b^{3}\right )} \log \left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right ) - 192 \, {\left (A a^{3} - 3 \, B a^{2} b - 3 \, A a b^{2} + B b^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + \frac {400 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 1200 \, B a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 1200 \, A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 400 \, B b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 120 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 360 \, A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 288 \, B a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 96 \, A b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 36 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 72 \, B a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 72 \, A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 8 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, A a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, A a^{3}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}}}{192 \, d} \]

[In]

integrate(cot(d*x+c)^5*(a+b*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

-1/192*(3*A*a^3*tan(1/2*d*x + 1/2*c)^4 - 8*B*a^3*tan(1/2*d*x + 1/2*c)^3 - 24*A*a^2*b*tan(1/2*d*x + 1/2*c)^3 -
36*A*a^3*tan(1/2*d*x + 1/2*c)^2 + 72*B*a^2*b*tan(1/2*d*x + 1/2*c)^2 + 72*A*a*b^2*tan(1/2*d*x + 1/2*c)^2 + 120*
B*a^3*tan(1/2*d*x + 1/2*c) + 360*A*a^2*b*tan(1/2*d*x + 1/2*c) - 288*B*a*b^2*tan(1/2*d*x + 1/2*c) - 96*A*b^3*ta
n(1/2*d*x + 1/2*c) - 192*(B*a^3 + 3*A*a^2*b - 3*B*a*b^2 - A*b^3)*(d*x + c) + 192*(A*a^3 - 3*B*a^2*b - 3*A*a*b^
2 + B*b^3)*log(tan(1/2*d*x + 1/2*c)^2 + 1) - 192*(A*a^3 - 3*B*a^2*b - 3*A*a*b^2 + B*b^3)*log(abs(tan(1/2*d*x +
 1/2*c))) + (400*A*a^3*tan(1/2*d*x + 1/2*c)^4 - 1200*B*a^2*b*tan(1/2*d*x + 1/2*c)^4 - 1200*A*a*b^2*tan(1/2*d*x
 + 1/2*c)^4 + 400*B*b^3*tan(1/2*d*x + 1/2*c)^4 - 120*B*a^3*tan(1/2*d*x + 1/2*c)^3 - 360*A*a^2*b*tan(1/2*d*x +
1/2*c)^3 + 288*B*a*b^2*tan(1/2*d*x + 1/2*c)^3 + 96*A*b^3*tan(1/2*d*x + 1/2*c)^3 - 36*A*a^3*tan(1/2*d*x + 1/2*c
)^2 + 72*B*a^2*b*tan(1/2*d*x + 1/2*c)^2 + 72*A*a*b^2*tan(1/2*d*x + 1/2*c)^2 + 8*B*a^3*tan(1/2*d*x + 1/2*c) + 2
4*A*a^2*b*tan(1/2*d*x + 1/2*c) + 3*A*a^3)/tan(1/2*d*x + 1/2*c)^4)/d

Mupad [B] (verification not implemented)

Time = 7.83 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.07 \[ \int \cot ^5(c+d x) (a+b \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx=\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )\right )\,\left (A\,a^3-3\,B\,a^2\,b-3\,A\,a\,b^2+B\,b^3\right )}{d}-\frac {{\mathrm {cot}\left (c+d\,x\right )}^4\,\left (\mathrm {tan}\left (c+d\,x\right )\,\left (\frac {B\,a^3}{3}+A\,b\,a^2\right )+\frac {A\,a^3}{4}+{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (-\frac {A\,a^3}{2}+\frac {3\,B\,a^2\,b}{2}+\frac {3\,A\,a\,b^2}{2}\right )+{\mathrm {tan}\left (c+d\,x\right )}^3\,\left (-B\,a^3-3\,A\,a^2\,b+3\,B\,a\,b^2+A\,b^3\right )\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,\left (A-B\,1{}\mathrm {i}\right )\,{\left (b+a\,1{}\mathrm {i}\right )}^3\,1{}\mathrm {i}}{2\,d}-\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,\left (A+B\,1{}\mathrm {i}\right )\,{\left (-b+a\,1{}\mathrm {i}\right )}^3\,1{}\mathrm {i}}{2\,d} \]

[In]

int(cot(c + d*x)^5*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^3,x)

[Out]

(log(tan(c + d*x))*(A*a^3 + B*b^3 - 3*A*a*b^2 - 3*B*a^2*b))/d - (cot(c + d*x)^4*(tan(c + d*x)*((B*a^3)/3 + A*a
^2*b) + (A*a^3)/4 + tan(c + d*x)^2*((3*A*a*b^2)/2 - (A*a^3)/2 + (3*B*a^2*b)/2) + tan(c + d*x)^3*(A*b^3 - B*a^3
 - 3*A*a^2*b + 3*B*a*b^2)))/d - (log(tan(c + d*x) + 1i)*(A - B*1i)*(a*1i + b)^3*1i)/(2*d) - (log(tan(c + d*x)
- 1i)*(A + B*1i)*(a*1i - b)^3*1i)/(2*d)